M153 - Programm des Bayerischen Landesamtes für Umwelt

Version 01/2010

Datum: 15.05.2020

Ingenieurbüro Miller, Nürnberg

Station: WRV Döhlau - Prog-Zustand - Einleitungsstelle 03 Bemerkung : Warme Steinach

DETAILLIERTE FLÄCHENERMITTLUNG

Flächen	Art der Befestigung	A _E in ha	Ψ_{m}	A _u in ha
Dachfläche	Ziegel	0,007	0,9	0,006
Hoffläche	Pflaster mit dichten Fugen	0,003	0,75	0,002

0,01 0,009

Ingenieurbüro Miller	Nijmbera						
mgchicarbaro Mile	, realisticing						
200 00000000000000000000000000000000000		Qualitative G		elastung			- 45.05.000
	hlau - Prog-Zustand		13			1	Datum: 15.05.2020
Gewässer (Anhang A, Tabelle A.1a und A.1b)				Тур	Gewässerpunkte G		
Warme Steinach						G 4	G = 21
Flächenanteile f _i (Kap. 4)			Luft L _i (Tab. A.2) Flächen F		F _i (Tab. A.3)	Abflussbelastung B _i	
Flächen	A _u in ha	f _i n. Gl.(4.2)	Тур	Punkte	Тур	Punkte	$B_i = f_i \cdot (L_i + F_i)$
Dachfläche	0,006	0,75	LI	1	F 2	8	6,75
Hoffläche	0,002	0,25	LI	1	F 3	12	3,25
			L		F		
			L		F		
			L		F		
			L		F		
	$\Sigma = 0.009$ $\Sigma = 1$ Abflussbelastung B = Summe (B _i)		= Summe (B:):	B = 10			
maximal zulässiger l	67.130.00	= G/B		1 12/13/04		· · · · · · · · · · · · · · · · · · ·	D _{max} =
maximal zulässiger Durchgangswert D _{max} = G/B vorgesehene Behandlungsmaßnahmen (Tabellen: A.4a, A.4b und A.4c) Typ					Durchgangswerte D;		
D					balangangsmaka bij		
						D	
						D	
		20000000	24.0000.1000.300 <u>-</u>	7011971 40.0% AC 5.2 (0	NO COLLEGE I LANCE REPORTED		_
Durchgangswert D = Produkt aller D _i (siehe Kap 6.2.2):					D =		
Emissionswert E= B · D					E =		
keine Regenwasse	erbehandlung erforde	erlich, da B = 10 <=	G = 21				

M153 - Programm des Bayerischen Landesamtes für Umwelt					Version 01/2010		
g							
Hydraulis	che Gewäs	serbelastung					
Projekt : WRV Döhlau - Prog-Zustand - Einleitungsstelle 03 Gewässer : Warme Steinach					15.05.2020		
mittlere Wassertiefe h: m bekannter Mittelwasserabfluss MQ						m³/s m³/s m³/s	
Art der Befestigung A _{E,k} in ha				Ψ_{m}	A _u in ha		
Ziegel 0,007				0,9	0,006		
Pflaster mit (dichten Fuge	n	0,003	0,75	2	0,002	
			Σ = 0.01		$\Sigma =$	0,009	
6.3.1		Imissionspri	27722700	3.2		04900000	
240 2	l/(s·ha) l/s	Einleitungsw	<u> </u>	4,5 5742	- l/s		
des Speichervol	umens ist QE)r = 2 l/s					
	Hydraulis Prog-Zustand - Ich e b: it v: Art d Ziegel Pflaster mit d 6.3.1 240 2	Hydraulische Gewäs Prog-Zustand - Einleitungssteh e b: m errec m beka it v: m/s 1-jäh Art der Befestigu Ziegel Pflaster mit dichten Fuge	Hydraulische Gewässerbelastung Prog-Zustand - Einleitungsstelle 03 ch e b: m errechneter Mittelw m bekannter Mittelw it v: m/s 1-jährlicher Hochw Art der Befestigung Ziegel Pflaster mit dichten Fugen 6.3.1 Imissionspri 240 I/(s·ha) Einleitungsw	Hydraulische Gewässerbelastung Prog-Zustand - Einleitungsstelle 03 sch b: m errechneter Mittelwasserabfluss MQ : m bekannter Mittelwasserabfluss MQ : it v: m/s 1-jährlicher Hochwasserabfluss HQ: Art der Befestigung A _{E,k} in ha Ziegel 0,007 Pflaster mit dichten Fugen 0,003 \$\sum_{\text{D}} \text{Single} \text{D} \text{D} \text{Constraints} \text{D} \text{Torsselabfluss Q} \text{D}_{\text{I,max}} \text{:}	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	